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ABSTRACT

Out-of-distribution detection is vital in the deployment of Deep Neural Networks
in practical applications. Several methods exist that range from temperature scal-
ing of logits to developing an ensemble of models. This work surveys existing
methods for out-of-distribution detection that either use features extracted by pre-
trained models or propose minimal modifications to the architecture, analyses their
performance, shortcomings and proposes a few simple enhancements with that
produce comparable results.

1 INTRODUCTION

Understanding and estimating the uncertainty in a model is vital to studying the deployment of deep
neural networks, especially in practical settings. Uncertainty estimates are crucial in some cases
(DeVries & Taylor (2018b)) to judge if a human evaluator has to step in. In other words, the model
has to know what it doesn’t know.

As Guo et al. (2017) demonstrated, several deep networks make wrong predictions with very high
confidence. This is the issue of mis-calibration where the confidence of the prediction does not
represent the likelihood of the prediction. Several quite effective methods for calibrating neural
networks exist in literature (Lakshminarayanan et al. (2017), Pereyra et al. (2017), Kumar et al.
(2018)) that work with regularization techniques, priors on weights and several others.

The problem of calibrating neural networks is related to out-of-distribution (OOD) detection where
the model is capable of detecting samples that are drawn from distributions different from the train-
ing distribution.
It is possible to train a simple binary classifier to distinguish samples from in- and out- distributions.
However, these models tend to be biased towards the chosen out-distribution and cannot perform
well with samples from arbitrary distributions.

Lee et al. (2017) demonstrates the effectiveness of using synthesized OOD samples as a reference
out-distribution by modeling in-distributions using GANs Goodfellow et al. (2014) and sampling
from the boundary regions of the distribution. This method however suffers from training insta-
bility and all other issues related to GANs. Moreover, GANs have been very effective in image
applications but not so much in other domains (Rajeswar et al. (2017)).

It is thus required to perform OOD detection in the absence of a reference out-distribution.
Few methods use features extracted from the input using a pre-trained model (Hendrycks & Gimpel
(2016), Lee et al. (2018), Gal & Ghahramani (2016)) while others use these features in conjunction
with the learned priors (Alemi et al. (2018)), to derive an OOD confidence estimate. It is however
possible that the extracted features are not always characteristic of the in-distribution. Either features
from the initial layers of the pre-trained models can be used or dedicated models like VAEs (Kingma
& Welling (2013)) can be used to obtain useful latent space representations of the images.

Contribution: This work implements a few methods for OOD detection in the context of image
classification and provides insights into those that are promising and proposes a few enhancements
that improve their OOD detection performance.
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2 PROBLEM SETTING

Given IID samples (xi, yi) ∈ D, where D is the in-distribution and y ∈ {1, 2...k}, and a test
example x̃, our task is to predict the label ỹ and a confidence score r ∈ [0, 1] that indicates the if
the input is in- or out-of-distribution. r = 1 indicates that the input is in-distribution with 100%
confidence while r = 0 indicates otherwise.

3 METHODS

This work explores the following baseline methods and a enhancements for a few of them.

Baseline and Temperature Scaling Baseline methods in Hendrycks & Gimpel (2016), suggest
using the softmax score of the predicted class S(ỹ, x̃;T ) as the confidence value r after scaling the
logits by temperature T . Temperature helps distribute the confidence values to reflect high likelihood
while the softmax score indicates the confidence of the predicted class.

S(y, x̃;T ) =
exp(px̃,y/T )

Σkj=1exp(px̃,j/T )
(1)

where px̃,y are the logits for each of the classes.

ODIN Liang et al. (2017) proposes using the softmax score of the predicted class on perturbed
input S(ỹ, x̃

′
). Inputs are perturbed to enhance the confidence score on the particular sample. The

increase in the softmax score is expected to be negligible if the sample is OOD, and considerable
otherwise, assisting better separation in the confidence scores for in- and out-of-distribution samples.

x̃
′

= x̃− εsign(−∇x̃logS(ỹ, x̃;T )) (2)

BIN Baseline and ODIN expect the model to assign flat distributions for OOD samples. It is rea-
sonable to model the task as a multi-label classification with binary classifiers for each of the classes
so that the confidence scores represent the absolute likelihood each of the classes and the values are
not constrained to sum to one. The softmax activation is replaced with a sigmoid. Confidence r is
the maximum of probabilities across classes.
To mitigate the effect of class imbalance for each binary classifier (the positive and negative samples
for each of the classifiers are in the ratio k-1:1), the term for the negative examples is weighted by a
tune-able hyperparameter ζ.

L(θ) = Σ
(xi,1)∈D

exp(pxi
)

1 + exp(pxi
)

+ ζ Σ
(xi,0)∈D

1

1 + exp(pxi
)

(3)

BINC The use of softmax is motivated by better accuracy as against sigmoid activation. To pre-
serve accuracy performance while improving the OOD performance, we add a separate branch that
performs multi-label classification like the above method.
To implement this, the size of the output space of the primary model is increased to z. Two sets of
logits are mapped to from this output space independently. One of them is trained with a regular
cross entropy with a softmax activation, while the other is trained as BIN, with trainable calibration
loss (Kumar et al. (2018)) for each binary classifier added to the objective.

L(θ) = K(θ) + LBIN (θ) + λMMCE(θ) (4)

K is the standard cross entropy loss used for classification with one set of logits; LBIN is the same
objective used in the BIN method for the second set of logits; MMCE is the re-weighted estimate
from Kumar et al. (2018).

VIB Alemi et al. (2016) models the task as variational inference where a latent distribution Pθx̃
over Rz is obtained for each input from the primary model. Samples from latent distribution are
used to obtain confidence scores for each of the classes. The information in the latent distribution
is constrained by bottleneck-ing it through a prior Pφ. The model and the prior are thus trained to
most efficiently capture the distribution for all training samples.
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Alemi et al. (2018) subsequently demonstrated the utility of KL-divergence between the prior distri-
bution and the predicted distribution of the latent representation of the input in OOD detection. The
confidence score r is obtained from KL-divergence as below.

r(x̃) = exp(−KL(Pθx̃ , Pφ)) (5)

VIBY It might be difficult for the prior Pφ to capture the entire in-distribution. Considering the
diversity in the features across classes in the training set, separate priors Pφy for each class are
maintained. Confidence is calculated using two methods: one where the KL-divergence is the
weighted average of KL-divergences across classes, weighted by the predicted confidences and the
other where the KL-divergence is the minimum across classes.

rI(x̃) = exp(−Σ
y
P (y|x̃)KL(Pθx̃ , Pφy )) (6)

rII(x̃) = exp(−min
y
KL(Pθx̃ , Pφy

)) (7)

4 EVALUATION METRICS

We adopt the following four metrics to measure the effectiveness of a neural network in distinguish-
ing in- and out-of-distribution images.

FPR at 95% TPR can be interpreted as the probability that a negative example is mis-classified as
positive when the the true positive rate (TPR) is as high as 95%. True positive rate can be computed
by TPR = TP/(TP+FN) where TP and FN denote true positives and false negatives respectively. The
false positive rate (FPR) can be computed by FPR = FP / (FP + TN), where FP and TN denote false
positives and true negatives respectively.

Detection Error , i.e., Pe measures the mis-classification probability when TPR is 95%. The
definition of Pe is given by Pe = 0.5(1-TPR) + 0.5FPR, where we assume that both positive and
negative examples have the equal probability of appearing in the test set.

AUROC is the Area under the Receiver-Operator Characteristic, which is also a threshold-
independent metric. The ROC curve depicts the relationship between TPR and FPR. The AUROC
can be interpreted as the probability that a positive example is assigned a higher detection score than
a negative example. A perfect detector corresponds to an AUROC score of 100%.

AUPR is the Area under the Precision-Recall curve, which is another threshold independent met-
ric. The PR curve is a graph showing the precision=TP/(TP+FP) and recall=TP/(TP+FN) against
each other. The metric AUPR-In and AUPR-Out denote the area under the precision-recall curve
where in-distribution and out-of-distribution images are specified as positives, respectively.

5 EXPERIMENTS

5.1 ARCHITECTURE AND TRAINING CONFIGURATIONS

For the primary model, we adopt Wide ResNet (Zagoruyko & Komodakis (2016)) architecture with
depth 28 and width 10 and no dropout layers. The hyper parameters are set identical to the original
Wide ResNet (Zagoruyko & Komodakis (2016)). The networks are trained with stochastic gradient
descent with Nestrov momentum for 200 epochs with batch size 128 and momentum 0.9. The
learning rate starts at 0.1 and is dropped by a factor of 0.1 at 50% and 75% of the training progress.
The model is implemented in Tensorflow and takes 6 hours to train on a Titan X GPU.

5.2 DATASETS

The in-distribution dataset is CIFAR10 which is split into train/validation/test sets with 45k/5k/10k
images in each. The various out-distributions used for validation and testing are listed below.
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Out-of-distribution Method FPR & 95% TPR Detection Error AUROC AUPR-IN AUPR-OUT
dataset ↓ ↓ ↑ ↑ ↑

Gaussian
Noise

Baseline 65.7 35.37 90.92 95.87 87.33
Baseline+T 0.0 2.54 99.83 99.87 99.77

ODIN 0.0 2.54 99.83 99.87 99.77
BIN 62.1 33.6 93.16 95.76 84.23

BINC 68.0 36.54 93.33 95.93 85.45
VIB 17.2 11.12 88.93 99.92 81.89

VIBY-I 0.5 2.78 98.92 99.85 97.96
VIBY-II 0.2 2.59 99.44 99.9 98.96

Tiny
ImageNet
(crop)

Baseline 61.4 33.22 70.06 85.88 86.49
Baseline+T 41.8 23.41 93.03 94.38 91.2

ODIN 25.8 15.41 95.85 96.51 95.23
BIN 59.6 32.29 89.35 91.32 86.34

BINC 50.3 27.70 93.15 95.00 89.65
VIB 38.2 21.62 85.37 92.54 79.12

VIBY-I 43.5 24.28 92.54 93.69 90.21
VIBY-II 43.2 24.09 92.85 93.78 91.16

Tiny
ImageNet
(resize)

Baseline 64.8 34.92 63.74 81.5 85.31
Baseline+T 55.5 30.22 90.05 91.87 87.86

ODIN 46.4 25.65 91.71 93.01 90.17
BIN 62.0 33.55 86.34 86.77 84.18

BINC 58.8 31.94 90.49 92.49 86.91
VIB 52.1 28.57 83.45 88.75 77.52

VIBY-I 54.1 29.55 89.77 90.55 87.48
VIBY-II 52.2 28.59 90.03 90.59 88.31

Table 1: Out-of-distribution detection performance for various OOD sets

Gaussian Noise The synthetic Gaussian noise dataset consists of 1500 random 2D Gaussian noise
images, where each RGB value of every pixel is sampled from an i.i.d Gaussian distribution with
mean 0.5 and unit variance which are further clipped into the range [0, 1].

Tiny Image Net The Tiny ImageNet dataset consists of a subset of ImageNet images. It con-
tains 10,000 test images from 200 different classes. We sample 1500 random images and construct
two datasets TinyImageNet (crop) and TinyImageNet (resize), by either randomly cropping image
patches of size 32 x 32 or downsampling each image to size 32 x 32.

The test/val split for the above datasets is 1000/500.

5.3 HYPER-PARAMETER TUNING

For Baseline+T and ODIN, T (for both) and ε (for ODIN) are tuned to minimize FPR-at-95%-TPR
on the OOD validation set. For BIN and BINC, ζ is set to 0.05. For BINC, λ is set to 0.5. For VIB, β
is set to 0.005 and for VIBY, β is set to 0.01. The same βs surprisingly minimize FPR-at-95%-TPR
for all OOD validation sets. z used for BINC, VIB and VIBY is set to 64.

6 RESULTS

Accuracy The accuracy drops with the use of BIN (2). This is a result of the change in activation
of the logits. The accuracy for other models is close to the baseline and not affected much.

Out-of-distribution detection Among all the methods, ODIN has the best performance among
all methods.

Baseline+T is understandably better than Baseline due to temperature scaling and better calibrated
confidence scores. It is however worse than ODIN due to lack of input perturbation and enhance-
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Method Accuracy
Baseline 93.76

BIN 92.54
BINC 93.66
VIB 93.71

VIBY 93.63

Table 2: Classification performance of various methods

ment. This effect is not observed for Gaussian noise due to the perturbation resulting in a similar
input.

BINC is a slight improvement over BIN. This is presumably because each of the binary classifiers
are better calibrated and represent confidences with high likelihood.

VIB proves to be a decent method for OOD detection, however not the best. VIBY are better than
VIB for all datasets in terms of non-threshold based metrics. This is justified by the higher amount
of information retained in the class wise priors as against the information retained in the single prior.
VIBY-II performs better as compared to VIBY-I due to possible mis-calibration of the confidences
that weight the KL-divergences.

7 CONCLUSION

The proposed enhancements seem to work in improving the respective primitive methods for the
few datasets that have been experimented with. However more rigorous experimentation is required
with a wider range of OOD sets.
Even though the proposed methods are far behind the state of the art ODIN, perturbations to the
input are only intuitive in the context of images.

Even though other methods that perform better than the proposed methods do exist (Lee
et al. (2018)), they can be too resource intensive. The proposed methods are more compact, general
and applicable to other domains as well and are expected to perform better. The pursuit of this work
is to develop a general technique that works for all deep neural networks and these methods offer a
greater promise. We expect future research to provide us with more compact methods that tackle
OOD detection along the lines of the proposed methods.
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