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ABSTRACT

The work attempts to create and train a seq2seq model to generate motion
sequences from sign annotations so that the generated motion sequences

can be rigged onto a virtual avatar and made to sign the sentence.

To incorporate a human-like variability and naturalness in the generated
sequences, the generation process is coupled with style parameters that
are learnt in an unsupervised manner using a GAN approach.

The work however fails in generating reliable sequences usable for com-
munication, but does explore a few representations for the motion capture

data and invalidates using certain approaches.



INTRODUCTION

There have been very few attempts to translate spoken or written language
into sign language because of the minority of the population that uses sign
language and the lack in capital returns. However the problem is quite
a challenging one, involving disciplines of linguistics, vision and signal

processing.

Human Motion Sequences involve a large number of degrees of freedom.
So many that it becomes impractical to be able to process all of them using
statistical or hand engineered methods. Having something like a language
built out of the motion sequence is even more nuanced with a large num-
ber of parameters to take into account.

Deep learning is aptly suited for the task of generating data of such com-

plex structure.

Though a lot of headway has been made into generating images, expe-
cially using GANs, (Goodfellow et al. (2014)), similar progress is yet to
be made in generating motion sequences, like that of HPGAN, (Barsoum
et al. (2017)) but on a larger scale.

An end to end synthesis system like that of Tacotron, (Wang et al. (2017)),
suffers from lack of variation and tends to produce the mean of the train-
ing samples. This was tackled with the introduction of the idea of style
tokens, (Wang et al. (2018)), and having the output correspond with these
styles. That could be difficult to have if the data is not sorted according
to the different styles. Moreover it may be difficult to directly observe
interpretable styles like in the case of motion sequences for sign language
gestures.

Using the ideas developed in the study of GANs, InfoGAN (Chen et al.

(2016)), the idea of performing a semantic interpretation of the latent space



learnt by the adversarial process itself could be extended into this task.
The latent space could have a semantic interpretation with the features
corresponding to the style of signing, extent of overlap, hand slips and

other such characteristics.

This work makes this proposal and attempts to setup a framework for
performing this kind of a generative process in a data scarce setup. While
the work is left in an intermediate stage, it establishes certain approaches
that could be taken the way forward in representation of the data.

The particular approaches it explores for the representation of orientations
are euler angles, quaternions and discrete classes of the angle space.
This work combines studies on human activity recognition, signal-data

generation, hierarchical modelling and language translation.



PRELIMINARIES

Kindly refer to the cited papers for reference to the below mentioned
preliminaries relevant to understanding the work done here.

Data
Brock and Nakadai (2018)

RNNs
Colah'’s Blog

GANs

Goodfellow et al. (2014)
Mirza and Osindero (2014)

Thttp:/ / colah.github.io/posts/2015-08-Understanding-LSTMs/



APPROACHES

Architectures

The overall architecture takes the form of a straight forward Conditional
GAN setup. The difference lies in the conditional input here being not a
one hot vector description of the condition but is of a variable length that

is to be summarised using an encoder network.

The generator reads in a sequence of annotations which is input into
a generator, along with a sample from the latent space. The generator
outputs a produced sequence.

The produced sequence and the target sequence are input into the discrim-
inator and are supervised with the real/fake labels.
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Figure 0.1: An eagle eye view of the architecture



The generator being a sequence to sequence model has an encoder-decoder
architecture. The respective architectures are explained in the following
sections. The structure of the discriminator has not been documented as it
was implemented but not tested. In a nutshell, it is a convolutional network
with filters among which each filter performs a temporal convolution over
the angles of a joint over time.

Encoder

The encoder network involves the components described below.

¢ The annotation is projected into a learnable embedding space

¢ Sinusoidal position encodings as described in (Vaswani et al. (2017))
are added to the embed annotation. This is done to provide position
information to the encoder RNN Network

* A residual convolution is applied over these embeddings so that the
context information is accounted for. However this is optional as
only the immediate context is essential considering the transitions

that are to be captured involve only the adjacent annotations

* The output of the convolutions is processed by a bidirectional en-
coder and the encoder states are passed on to the decoder

Decoder

¢ The latent vector is tiled and added to each of the encoder outputs.
This is to force the style space to act as a noise parameter that is
additive

¢ The attention weights of the encoder outputs are determined by the
state of the first layer of the RNN layer (to facilitate better paralleliza-

tion) and output token in the previous timestep using a multihead
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Figure 0.2: Encoder architecture

attention network. The attention is multihead so that the transitions

can be asynchronous across joints

¢ This weighted context vector is combined with the previous output
and fed to the RNN Network

* The RNN network uses dropouts and residual connections to avoid
exploding gradients

* The output of the RNN is passed through a three layer network, the
probabilities for the angles are generated with a softmax layer and
the angles for each of the joints are sampled

Data Representation

In a data rich scenario, even if the target output is constrained to be in a

certain space, the model need not be restricted as such, as it can be trained
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Figure 0.3: Decoder architecture

to learn the constraints on the output.
But the same cannot be expected if the amount and quality of the data is
poor. In these scenarios, the output of the model needs to be inherently

constrained.

For this purpose, the choice of data representation also influences the
activation functions used, the architecture itself and the training strategy.

Three representations are chosen and studied.

Regression with Euler Angles

The euler angle space is cyclic. The angles -180° and 180° are exactly the
same with a dissimilarity of zero. This cannot be directly captured with a
euclidean distance measure in the cost function.

The gimbal lock problem could potentially create flat cost spaces with non



informative gradients as well.

Regression with Unit Quaternion Half Spaces

Euler angles being a three dimensional cyclic representation of orientation
can be converted to a constrained four dimensional representation called

a quaternion.

For a four vector of real values to represent a representation, it has to
have a unit norm. On top of this, quaternion spaces are redundant in
that a quaternion represents the exact same orientation as its negative

counterpart.

To tackle this, the space considered is a unit semi hypersphere in the
half space where the first component is positive. The activation of the

outputs of the network is designed to be of the form:

q(x,y,z,w) = \/

f is chosen to be a function that outputs a positive value while g is chosen
to be a function that is unconstrained as far as positivity is concerned.
The activation function is highly non differentiable. Initialization of the
weights tends to be a difficult task as well.

The half space introduced disturbs the distance measure used for the cost
function as opposite points on the diameter of the hypersphere on the
boundary of the half plane are identical while measure says otherwise.

Better distance measures could be explored.

Classification with discretized Euler Angles

The space of 360° is divided into 120 classes with a resolution of 3°. The
output activation is a softmax that outputs the probability of the angle
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Figure 0.4: Quaternion Activation Spaces. The space shown is the x com-
ponent of the activation of a two dimensional output

being a particular class.
To enforce some correlation among nearby classes, the target label is
smoothed while considering cross entropy for the cost. This is only a

workaround and better methods could be found.

Annotations and Paddings

An end-of-sentence token is added to the dictionary of annotations.

The sequence of gestures are edge-padded so that the batch contains
sequences of the same length.

The expectation in doing this is that the model learns to output a constant

gesture once it observes the <eos> token.
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Training

The training process is adversarial. This involves a generator cost and a
discriminator cost.

Costs

The generator cost involves the following;

* Smoothness cost so that that the output of the network is smooth
and gradual over time. sinzg where 0 is the difference between two

consecutive angles

* The segment lengths are expected to be constant. This is captured
by (x — 1)? where x is the predicted length and 1 is the actual length.
The experiments however consider the segment lengths to be fixed

¢ Distance between the target orientation and the predicted orientation.
Euclidean distance in the regression cases and cross entropy with

smoothened labels in case of classification

¢ Distance across time to be (soft/differentiable) Dynamic Time Warp-
ing distance (to be tried)

* WGAN loss for the generator

The discriminator cost is a standard WGAN loss involving a gradient
penalty term as in (Gulrajani et al. (2017)).

The style vector is sampled from a normal distribution.

Sequence Masks

Even though the gestures are edge-padded, as an alternative approach,

sequence masks are used. The differences are computed for each point
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along the entire length of the padded sequence but the cost for the sequence
only considers the differences up to its actual length and ignores the
padding. This is done considering the nature of the dataset where the
lengths of the sequences are highly variant and the majority of the lengths
of the sequences is just padding.

The mask ensures that due importance is given to the original sequence
over padding.
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RESULTS

Due to complications in the pre-training phase of the generator (using the
generator cost without the discriminator component), adversarial training
process did not commence. The below observations are in reference to the
pretraining of the generator.

The euler angles representation led to an extremely noisy output where
the inherent constraints on the data were hardly learnt.

The quaternion representation, thanks to the complex non-differentiable
space, failed to learn anything at all. Trivial initialization strategies tended
to place the initial cost closer to the non differentiable regions. More com-
plex designed initialization strategies could be explored.

The discretized cost with the cross entropy loss seemed to be the most

stable among all, with the training behaviour not very dependent on the

Behaviour of
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Figure 0.5: Training graphs of various configurations of the model
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initial values of the weights involved.

The cost space and consequently the training process varied significantly
with changing architectural elements.

The use of residual connections in the encoder and the decoder signifi-
cantly reduced the problem of exploding gradients.

Two architectural variants that were tried were; convolutions performed
on annotation embeddings followed by a fully connected network, a fully
connected network on embeddings followed by convolutions. The training
graphs are shown in figure 0.5.

While the second approach led to a very unstable training graph, the first
approach was relatively stable. Convolutions are designed to exploit spa-
tial correlations in the input. When the convolutions are performed on
the output of a fully connected net, they work with inputs that are not
necessarily correlated outright. The correlations need to be learnt by the
fully connected network through the convolutions. In the first approach,
the convolutions are performed on embeddings. The embedding space
being constrained, there are spatial correlations present outright. This is
presumably why the training graphs behave as they do.

The use of cost mask played a major role in the stabilizing the training
process. The dataset being highly skewed in the lengths of the gestures
was a problem. In some of the gestures, the edge-paddings occupied a
majority of the duration of the gesture. While the model was expected
to learn the paddings and when to freeze the output, this confused the
model into trying to figure out the variations in the padding.

The model ultimately converged to a local minima where it outputs a
constant posture which is presumably the mean of all the postures in the
dataset. This could be because of the inability of the model in memorizing
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the gestures corresponding to the annotations. Possible direction forward
is to explore larger encoder architectures and the importance of the pres-
ence of residual connections if and how they could affect the learning

process.
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APPENDIX

Code

The code base is structured into modules and scripts.

Main

The main executable file is main.py. The code in the file processes argu-
ments, builds config objects, constructs the Data, Model and the Train
objects according to the arguments and performs train and evaluate ac-

tions on the models and data.

The list of parameters in a file pointed to by the config argument is parsed
through and a dictionary (bundle) object is created. This config object is
passed to the various Data objects, Models and Train objects as a set of
hyperparameters based on which the objects are to be built.

Based on the dataset and the architecture arguments, the corresponding
Data, Model and the appropriate Train objects are created.

The model argument specifies loading of saved parameters from a set of
checkpoint files.

The mode argument specifies if the model is to be tested or trained with
test_index argument pointing to the appropriate test.

Data

The Data object handles the preprocessing of the data, saving of data on
disk in the post-processed form, normalizing, denormalizing of the data

and fetching batches from the data for training purposes.

The files in the data/ folder correspond to the various datasets and some-

times the same dataset in different forms. Each file defines a Data class
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with methods that process the dataset accordingly.

The __init__ () method loads from disk post processed data available in
the location pointed to by the variable self.datapath. If not, the data is
loaded from the location dir specified in the config object, processes it,
splits into test/eval/train sets.

The next_batch() splits the train data into batches and serves when a
function call is made.

Model

The Model object handles the creation of the graph of the model. The
code is divided into functions that apply/create the model on the place-
holders, compute the cost functions, compute and apply the gradients to
the weights according to the optimizer policy. The code is self explanatory.
The BaseModel class has the overall outline of the execution stream of all
the models while the abstract functions are implemented in the specific
model. The BaseModel class also has the code for saving the models and
loading them from checkpoint files.

One key feature of some of the models is that they are built for multi-gpu
setups. This typically involves splitting the batch among the GPUs, com-
puting the gradients according to the costs on each of the GPUs for the
corresponding batch, averaging these updates and then applying them on
the weights. The process is described in greater detail in the blog ? and is

reflected in the code in the implementation.

Trainer

The Trainer object takes an instance of Model and Data and fetches
batches from the Data object while updating the weights of the Model.

Zhttps:/ /www.tensorflow.org/guide /using_gpu#using_multiple_gpus
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The various trainers are built keeping the format of the batch in mind. The

major types of Trainers involved are classified into adversarial trainers

and regular trainers and also depend on the type of the dataset.

The main one, CSeqGANTrain first runs the pre-training epochs, and

then performs the adversarial training for instance.

Execution

To run a fresh instance of training:

Build an appropriate Data class inheriting from the BaseData. Im-
plement the set_data_path() method to set the location of the npy
files to be stored and read from, from the disk after post processing,
all the post and preprocessing functions. Add the imports in the
__init__.py file in the data folder. Or use an existing Data class.
Prefer to end the name of the folder of the location of npy files with
'_data’ as then the folder will be ignored by the version control sys-

tem.

Inherit from the BaseModel and follow the outline in the other
models and implement build_model(), create_placeholders() and
other such functions. Add the imports to the __init__.py file in the
models folder. Or use an existing Model class.

Perform the same for the Trainer class in the models folder though

the general methods are implemented already.

Add/update the appropriate config file to set the hyper parameters,
the checkpoint and the data source directories.

Check if the classes have been imported in the main.py file and
appropriately update the file to pick the right combination of Data,
Model and Trainer classes.
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e To run tests, add a function in one of the tests[23].py files or alterna-
tively create a function in a new file and assign it a test index in the
main.py file. The test_index argument serves as a pointer to the

correct function.

* Refer to the sample run.sh file and adjust the parameters accordingly.
Set the environment variable for the GPUs accordingly and execute

run.sh.

The files located in the home folder "user” on the system "HPI-JP2262’
involve scripts to convert csv to bvh files, copy of models, outputs to and

from the server.
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