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Introduction

• The goal of Imitation Learning (IL) is to 
learn robot control policies from 
demonstrations.

• Demonstrations from humans can be 
diverse, even for well-specified tasks, 
due to hidden factors that are often 
continuous.

• Embedding and generating diverse 
behaviors can help personalize and 
improve human-robot collaboration.
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regions disproportionately.
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Behaviors with GSD 
(ours) accomplish the 
task and represent all 
relevant regions well.
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training demonstrations.

• Prior work [1] balances imitation and diversity objectives. Diversity is 
formulated as Mutual Information (MI), where the decoder 
(posterior) q, influences the nature of behavior diversity.

• Naively using MI can lead to insufficient or arbitrary diversity [2].
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Overview of a general multimodal IL framework.

No regularization 
leads to arbitrary or 
insufficient diversity.

Spectral 
Normalization leads 
to uniform variation, 

but behaviors 
diverge from the 

demonstrated goal.

GSD (ours) leads to 
diverse behaviors 
that consistently 

progress towards the 
demonstrated goal.

Latent spaces visualized with locations at which objects are 
placed by the generated behaviors. White regions indicate 

failure to place in the relevant regions (below).
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||𝜇𝑞 ⋅| 𝑠, 𝑎 − 𝜇𝑞 ⋅| 𝑠′,𝑎′ || ≤ ||𝑠 − 𝑠′|| Constraints with 
Spectral Normalization

We consider domains and demonstrations with known and measurable 
ground truth factors (GTFs). Generalization is measured with error 

between desired values and those of generated behaviors.

Our method Guided Strategy Discovery (GSD) uses
a novel regularization scheme where constraints are locally modulated,

driving the diversity to be task-relevant.

• Spectral Normalization (SN) [2] enforces Lipschitz constraints to 
promote uniform variation but can be misaligned with the task.
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Our goal is to develop a generalizable latent space for generating 
task-accomplishing behaviors that generalize to unseen factors.
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||𝜇𝑞 ⋅| 𝑠, 𝑎 − 𝜇𝑞 ⋅| 𝑠′,𝑎′ || ≤ 𝑓 𝑠, 𝑎 ⋅ ||𝑠 − 𝑠′||

𝐷 𝑠, 𝑎 = 𝜎(𝜆𝑆 ⋅ 𝑓 𝑠, 𝑎  + 𝑏) Discriminator form 
and constraints 

with GSD

Future Work
• Explore latent conditioned discriminators to allow 

generalization beyond train demonstrations.
• Learn from real human demonstrations and evaluate 

generalization subjectively.

We investigate the use of MI in multimodal IL and propose a 
novel regularization scheme that improves generalization 

performance across three continuous control domains.
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