

Generalized Behavior Learning from Diverse Demonstrations

Varshith Sreeramdass, Rohan Paleja, Letian Chen, Sanne van Waveren, Matthew Gombolay {vsreeramdass, rpaleja3, letian.chen, sanne}@gatech.edu, matthew.gombolay@cc.gatech.edu

1. Introduction

- Humans exhibit natural diversity in their demonstrations.
- Learning diverse policies help adapt to env. changes or other agents.

2. Prior work and Limitations

InfoGAIL [1] (IG) optimizes mutual information using a decoder to encourage coverage of diverse demos

KEY INSIGHT

Restricting latent assignments to relevant regions can produce diverse task-accomplishing behaviors.

5. Latent Spaces Visualization

4. Quantitative Evaluation

Pick z with factor value closest to desired test value.

MOTIVATION

How can we utilize diverse

demos to generate novel

task-accomplishing policies?

We consider known, measurable factors for the sake of evaluation. For 1D factors, green indicates train and red indicates test intervals.

Performance Metrics:

X-Axis: Task - Episode rewards Y-Axis: Diversity - Average error in desired factor value

> Our approach outperforms baselines by ~21% in recovery of novel behavior factors while matching task performance.

6. Future Work

- · Scale to high dimensional and non-markovian factors.
- Evaluate with real robot setups and subjective human metrics.

3. Our Approach: Guided Strategy Discovery (GSD)

nigh f-energy region multiple possible ○ unassigned

CONTRIBUTION: TASK-RELEVANT

DIVERSITY Lipschitz-based local regularization discourages coverage outside relevant regions.

Constraint is enforced only for task-relevant predecessors (A) by scaling on both sides

Distinct assignment for task-irrelevant state-actions (B) is

A denotes concatenation

Authors

Acknowledgements & References

1R01HL157457-01A1, NSF grant CPS-2219755, ONR grant N00014-22-1-2834, and a grant from Ford Motor Company

[1] Li, Y., et. al.. (2017). InfoGAIL: Interpretable imitation learning from visual demonstrations. Advances in NeurIPS, 30.

[2] Chen, L., et. al. (2020). Joint goal and strategy inference across demonstrators via reward network distillation. HRI.

[3] Park, S., et. al. (2021). Lipschitz-constrained unsupervised skill discovery. In ICR

